Bandit Convex Optimization: √ T Regret in One Dimension

نویسندگان

  • Sébastien Bubeck
  • Ofer Dekel
  • Tomer Koren
  • Yuval Peres
چکیده

We analyze the minimax regret of the adversarial bandit convex optimization problem. Focusing on the one-dimensional case, we prove that the minimax regret is Θ̃( √ T ) and partially resolve a decade-old open problem. Our analysis is non-constructive, as we do not present a concrete algorithm that attains this regret rate. Instead, we use minimax duality to reduce the problem to a Bayesian setting, where the convex loss functions are drawn from a worst-case distribution, and then we solve the Bayesian version of the problem with a variant of Thompson Sampling. Our analysis features a novel use of convexity, formalized as a “local-to-global” property of convex functions, that may be of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimistic Bandit Convex Optimization

We introduce the general and powerful scheme of predicting information re-use in optimization algorithms. This allows us to devise a computationally efficient algorithm for bandit convex optimization with new state-of-the-art guarantees for both Lipschitz loss functions and loss functions with Lipschitz gradients. This is the first algorithm admitting both a polynomial time complexity and a reg...

متن کامل

Bandit Convex Optimization: \(\sqrt{T}\) Regret in One Dimension

We analyze the minimax regret of the adversarial bandit convex optimization problem. Focusing on the one-dimensional case, we prove that the minimax regret is Θ̃( √ T ) and partially resolve a decade-old open problem. Our analysis is non-constructive, as we do not present a concrete algorithm that attains this regret rate. Instead, we use minimax duality to reduce the problem to a Bayesian setti...

متن کامل

Multi-scale exploration of convex functions and bandit convex optimization

We construct a new map from a convex function to a distribution on its domain, with the property that this distribution is a multi-scale exploration of the function. We use this map to solve a decadeold open problem in adversarial bandit convex optimization by showing that the minimax regret for this problem is Õ(poly(n) √ T ), where n is the dimension and T the number of rounds. This bound is ...

متن کامل

Regret Analysis for Continuous Dueling Bandit

The dueling bandit is a learning framework wherein the feedback information in the learning process is restricted to a noisy comparison between a pair of actions. In this research, we address a dueling bandit problem based on a cost function over a continuous space. We propose a stochastic mirror descent algorithm and show that the algorithm achieves an O( √ T log T )-regret bound under strong ...

متن کامل

On the Complexity of Bandit and Derivative-Free Stochastic Convex Optimization

The problem of stochastic convex optimization with bandit feedback (in the learning community) or without knowledge of gradients (in the optimization community) has received much attention in recent years, in the form of algorithms and performance upper bounds. However, much less is known about the inherent complexity of these problems, and there are few lower bounds in the literature, especial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015